Problem 1. (1 point) METUNCC/Applied_Math/discrete/order2-easy.pg
Discretize the differential equation $y^{\prime \prime}-2 y^{\prime}+y=\delta\left(t+\left(\frac{5}{4}\right)\right), y(-2)=0, y(-1)=0$ with step-size $h=\frac{1}{4}$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
- \\
-
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
$$

(Enter variables $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ into webwork as y0, y1, y2, y3, y4, y5.)
Problem 2. (1 point) METUNCC/Applied_Math/discrete/order2-med.pg
Discretize the differential equation $y^{\prime \prime}-y^{\prime}+2 y=\delta\left(t-\left(\frac{18}{5}\right)\right), \quad y^{\prime}(2)=0, y(4)=2$ with step-size $h=\frac{2}{5}$.

$$
\left[\begin{array}{llll}
- & - & - & - \\
- & - & - & - \\
- & - & - & - \\
- & - & - & -
\end{array}\right]\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
$$

(Enter variables $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ into webwork as y0, y1, y2, y3, y4, y5.)
Problem 3. (1 point) METUNCC/Applied_Math/discrete/imp-resp_apply.pg
The differential equation $-y^{\prime \prime}=f(t), y(1)=0, y^{\prime}(2)=0$ discretized with step-size $h=\frac{1}{5}$ has the following impulse responses.
$\mathbf{y}^{(\mathbf{1})}=\frac{1}{5}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \quad \mathbf{y}^{(\mathbf{2})}=\frac{1}{5}\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 2\end{array}\right] \quad \mathbf{y}^{(\mathbf{3})}=\frac{1}{5}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right] \quad \mathbf{y}^{(\mathbf{4})}=\frac{1}{5}\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$
What is the discrete solution to the differential equation with $f(t)=2 t+1$?

Problem 4. (1 point) METUNCC/Applied_Math/discrete/order2-xpert.pg
Discretize the differential equation $y^{\prime \prime}+8 t y^{\prime}+\delta\left(t-\left(\frac{1}{2}\right)\right) y=2 t, \quad y^{\prime}(0)=3, \quad y^{\prime}(1)=2 \quad$ with step-size $h=\frac{1}{4}$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
- \\
-
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

(Enter variables $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ into webwork as y0, y1, y2, y3, y4, y5.)

